





VIGNAN'S SCHOLASTIC APTITUDE TEST

This booklet contains 24 printed pages

PAPER -1: MATHEMATICS, PHYSICS, CHEMISTRY, & ENGLISH / APTITUDE

Read carefully the following Instructions before opening the seal of this booklet.

| ВС   | ΟΚLET      |
|------|------------|
| CODE | SERIAL No. |
| A    |            |

Do not open this Test Booklet untill you are instructed by the invigilator.

#### Important Instructions:

- 1. Immediately fill in the particulars at the bottom of this test booklet with blue/black ball point pen. Use of pencil is strictly prohibited.
- 2. A separate OMR answer sheet is provided along with this test booklet. When you are directed to open the test booklet, take the OMR answer sheet and fill in the required particulars carefully.
- 3. The CODE for this booklet is **A**. Make sure that the CODE on the OMR Answer Sheet should be marked as that on this booklet.
- 4. Immediately on opening the booklet, please check for (i) the same booklet code (A/B/C/D) on the top of each page (ii) serial number of the questions (1-120) (iii) the number of pages (iv) correct printing.
- 5. The test is of  $2\frac{1}{2}$  hours duration.
- 6. The test consists of 120 Questions. The maximum marks are 120.
- 7. There are 4 sections in the question paper. Each question carries 1 mark for correct answer and there is no negative marking for incorrect answer.
  - Section I MATHEMATICS (30 Marks) consists of 30 questions (1 to 30).
  - Section II PHYSICS (30 Marks) consists of 30 questions (31 to 60).
  - Section III CHEMISTRY (30 Marks) consists of 30 questions (61 to 90).

Section IV - ENGLISH / APTITUDE (30 Marks) consists of 30 questions (91 to 120).

- 8. Candidates will be awarded marks as stated in instruction No.6 for correct response to each question. Marks will not be awared for unattempted / unmarked questions on the answer sheet.
- 9. No candidate is allowed to carry any textual material,printed or written, bits of papers, blank papers, mobile phone, any electronic device, etc., except the hall ticket, ball point pen, HB pencil, eraser and sharpner inside the examination hall/room.
- 10. Rough work is to be done in the space provided at the bottom of each page, on pages 2 and 21 to 24 in the test booklet only.
- 11. On completion of the test, the candidate must hand over the test booklet along with OMR answer sheet to the Invigilator in the room/hall.
- 12. Do not fold, mutilate or make any stray marks on the OMR answer sheet.

| Name of the Candidate (in Capital Letters): |                          |
|---------------------------------------------|--------------------------|
| Parent's Mobile No. :                       | Jr.Inter Marks           |
| School/Coching Centre Name :                |                          |
| Residence Address :                         |                          |
|                                             | Pin Code :               |
| Candidate's Signature :                     | Invigilator's Signature: |

# **A** SPACE FOR ROUGH WORK

### SECTION - I MATHEMATICS

- 1.  $\lim_{n \to \infty} \left(\frac{1}{5}\right)^{\log_{\sqrt{5}} \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots \infty\right)}$  equals
  - A. 2 B. 4 C. 8 D. 0 []
- 2. Two cars are travelling along two roads which cross each other at right angles at *A*. One car is travelling towards A at 21 *kmph* and the other is travelling towards A at 28 *kmph*. If initially their distances from A are 1500 *km* and 2100 *km* respectively. Then the nearest distance between them is
  - A. 30 B. 45 C. 60 D. 75 [ ]
- 3. Suppose that f is a differentiable function with the property that f(x + y) = f(x) + f(y) + xy and

$$\lim_{h \to 0} \frac{f(h)}{h} = 3 \text{ Then}$$

A. f is a linear function

C. 
$$f(x) = 3x + \frac{x^2}{2}$$
 D.  $f(x) = 3x - \frac{x^2}{2}$  [ ]

B.  $f(x) = 3x + x^2$ 

- 4. Mean of 100 items is 49. It was discovered that three items which should have been 60, 70, 80, were wrongly read as 40, 20, 50 respectively. The correct mean is
  - A. 48 B.  $82\frac{1}{2}$  C. 80 D. 50 [ ]
- 5. If  $f(x) = x^2 (a+b)x + ab$  and A and H be the A.M and H.M between two quantities a and b. Then
  - A. A f(A) = H f(H)B. A f(H) = H f(A)C. A + f(A) = H + f(H)D. f(A) + H = f(H) + A
- 6. The statement  $p \rightarrow (q \rightarrow p)$  is equivalent to

A. 
$$p \rightarrow (p \rightarrow q)$$
B.  $p \rightarrow (q \lor p)$ C.  $p \rightarrow (q \land p)$ D.  $p \rightarrow (p \leftrightarrow q)$ []

V - SAT-'21

7. Let  $2\sin^2 x + 3\sin x - 2 > 0$  and  $x^2 - x - 2 < 0$  (x is measured in radians). Then x lies in the interval

Α

A. 
$$\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$
 B.  $\left(-1, \frac{5\pi}{6}\right)$  C.  $\left(-1, 2\right)$  D.  $\left(\frac{\pi}{6}, 2\right)$  [ ]

8. A lamp post standing at a point A on a circular path of radius r subtends an angle  $30^{\circ}$  at some point B on the path and AB subtends an angle of  $45^{\circ}$  at any other point on the path, then height of the lamp post is

A. 
$$\sqrt{6}r$$
 B.  $\frac{r}{\sqrt{6}}$  C.  $\sqrt{\frac{2}{3}}r$  D.  $\sqrt{\frac{3}{2}}r$  []

9. Let Z be a complex number and a be a real parameter such that z<sup>2</sup> + az + a<sup>2</sup> = 0, then locus of z is a A. Circle B. Pair of straight lines C. Ellipse D. Parabola []
10. A coin is tossed (m + n) times (m > n) then the probability of getting at least m consecutive heads is

A. 
$$\frac{n}{2^{m+1}}$$
 B.  $\frac{n+2}{2^{m+1}}$  C.  $\frac{n+1}{2^{m+1}}$  D. Cannot be determined [B]

11. The roots of the quadratic equation  $8x^2 - 10x + 3 = 0$  are  $\alpha$  and  $\beta^2$  where  $\beta^2 > \frac{1}{2}$  then the equation whose roots are  $(\alpha + i\beta)^{100}$  and  $(\alpha - i\beta)^{100}$  is []

A. 
$$x^2 - x + 1 = 0$$
 B.  $x^2 + x + 1 = 0$  C.  $x^2 - x - 1 = 0$  D.  $x^2 + x - 1 = 0$ 

12. If *M* is a  $3 \times 3$  matrix, where  $M^T M = I$  and det(M) = 1 then det(M-I) =A. 1 B. -1 C. 0 D. 2 [ ]

13. Consider the system of linear equations in x, y,  $z(Sin3\theta)x - y + z = 0; (\cos 2\theta)x + 4y + 3z = 0$ and 2x + 7y + 7z = 0 then a value(s) of  $\theta$  in  $(0, \pi)$  for which the system has non-trivial solution is

A. 
$$\frac{5\pi}{6}$$
 B.  $\frac{\pi}{3}$  C.  $\frac{2\pi}{3}$  D.  $\frac{\pi}{2}$  [ ]

14. Between two junction stations there are 12 intermediate stations. Then the number of ways can a train<br/>be made to stop at 4 of these if no two of these halting stations are consecutive is[]A. 252B. 70C. 6300D. 126

15. Coefficient of  $x^4$  in the expansion of  $(2x^2 + x - 3)^6$  is A. 384 B. 192 C. 572 D. 64 [ ]

16. A focal chord of parabola  $y^2 = 4x$  is inclined at an angle of  $\frac{\pi}{4}$  with positive direction of X-axis, then the slopes of normals drawn at the ends of focal chord will satisfy the equation []

A.  $m^2 - 2m - 1 = 0$ B.  $m^2 + 2m - 1 = 0$ D.  $m^2 + 2m + 1 = 0$ 

17. *P* is variable point on the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  whose foci are the points  $S_1$  and  $S_2$  'e' is the eccentricity

of the given ellipse. Locus of the incentre of  $\Delta PS_1S_2$  is an ellipse whose eccentricity is

A. 
$$\frac{2e}{1-e}$$
 B.  $\frac{2e}{1+e}$  C.  $\sqrt{\frac{2e}{1-e}}$  D.  $\sqrt{\frac{2e}{1+e}}$  [ ]

18. The centre of a circle passing through the point (0,1) and touching the curve  $y = x^2$  at (2,4) is

A. 
$$\left(\frac{-16}{5}, \frac{27}{10}\right)$$
 B.  $\left(\frac{-16}{7}, \frac{5}{10}\right)$  C.  $\left(\frac{-16}{5}, \frac{53}{10}\right)$  D. None [ ]

19. Let f(x) be a function differentiable on  $[0, \alpha]$  such that f(0) = 1,  $f(\alpha) = 3^{1/6}$ 

If  $f^{1}(x) \ge [f(x)]^{4} + [f(x)]^{-2}$ , then the maximum value of  $\alpha$  is []

A. 
$$\frac{\pi}{6}$$
 B.  $\frac{\pi}{12}$  C.  $\frac{\pi}{24}$  D.  $\frac{\pi}{36}$ 

20. 
$$\int \frac{\cos 7x - \cos 8x}{1 + 2\cos 5x} =$$
  
A. 
$$\frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + c$$
  
B. 
$$\frac{1}{2}\sin 2x - \frac{1}{2}\cos 3x + c$$
  
C. 
$$\frac{1}{2}\sin 2x - \frac{1}{3}\sin 3x + c$$
  
D. 
$$\frac{1}{2}\sin 3x - \frac{1}{2}\sin 2x + c$$
  
[ ]

- 21. Let the position vectors of the points *P*, *A* and *B* be  $\overline{r}, \overline{i} + \overline{j} + \overline{k}$  and  $-\overline{i} + \overline{k}$ . If *PA* is perpendicular to *PB* but  $\overline{r}$  is not perpendicular to  $\overline{r} (\overline{j} + 2\overline{k})$  then  $\overline{r}$  is [ ]
  - A.  $\overline{i} + 2\overline{k}$  B.  $\overline{i} + 2\overline{j}$  C.  $\overline{j} 2\overline{k}$  D.  $\overline{j} + 2\overline{k}$
- 22. *BE* and *CF* are two medians of  $\triangle ABC$  whose vertex *A* is (1, 3). The equation to *BE* is *x*-2*y*+1=0 and *CF* is *y*-1=0 then the equation of *AB* and *AC* are [] A. 3x + 2y - 7 = 0, x - y + 2 = 0 B. 3x - 2y - 7 = 0, x + y - 2 = 0
  - C. 3x + 2y 7 = 0, x + y 2 = 0D. 3x + 2y - 7 = 0, x + y + 2 = 0
- 23. Equation of the curve satisfying the differential equation  $y(x + y^3)dx = x(y^3 x)dy$ , and passing through point (4, 2) is [ ]
  - A.  $x^{2} + y^{2} = 2Tan^{-1}\frac{y}{x} + c$ B.  $x^{2} + y^{2} + 2Tan^{-1}\frac{y}{x} = c$ C.  $x^{2} + y^{2} = 2Sin^{-1}\frac{y}{x} + c$ D.  $x^{2} + y^{2} + 2Sec^{-1}\frac{y}{x} = c$

24. The cure  $y = a\sqrt{x} + bx$  passes through the point (1, 2) and the area enclosed by the curve, the axis of X and the line x = 4 is 8 square units, then the values of a, b are [] A. 3, -1 B. -3, 1 C. 3, 1 D. -3, -1

25. If the angle  $\theta$  between the line  $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$  and the plane  $2x - y + \sqrt{\lambda}z + 4 = 0$  is such

that 
$$\sin \theta = \frac{1}{3}$$
 then the value of  $\lambda$  is []  
A.  $\frac{3}{4}$  B.  $\frac{-4}{3}$  C.  $\frac{5}{3}$  D.  $\frac{-3}{5}$ 

- 26. Direction ratios of the line of intersection of the planes x + y + z 1 = 0 and 2x + 3y + 4z 7 = 0 are
  - A. 1, 2, -3 B. 2, 1, -3 C. 4, 2, -6 D. 1, -2, 1 [ ]
- 27. *PQRS* is a trapezium with *PQ* and *RS* parallel. PQ = 6, QR = 5, RS = 3, PS = 4 and  $\angle P = 90^{\circ}$ . The area of *PQRS* is
  - A. 27 B. 12 C. 18 D. 20 [ ]

28. If 
$$g(x) = 2f\left(\frac{x}{2}\right) + f(2-x)$$
 and  $f^{11}(x) < 0$  for all  $x \in (0,2)$  then  $g(x)$  is increasing on

A. 
$$\left(0,\frac{4}{3}\right)$$
 B.  $\left(\frac{4}{3},2\right)$  C.  $(0,2)$  D.  $\left(0,\frac{3}{4}\right)$  [ ]

29. Let A,B,C be three angles such that  $A = \frac{\pi}{4}$  and  $\tan B \tan C = P$  then all possible value of P such that

A, B, C are the angles of a triangles are

A. 
$$(3 - 2\sqrt{2}, 3 + 2\sqrt{2},)$$
  
C.  $(-\infty, 3 - 2\sqrt{2}) \cup (3 + 2\sqrt{2}, \infty)$   
B.  $(0, 3 + 2\sqrt{2})$   
D.  $(3 - 2\sqrt{2}, 0) \cup (3 + 2\sqrt{2}, \infty)$   
[]

30. If 
$$\frac{x}{a} + \frac{y}{b} = 1$$
 and  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{ab}{a+b}$  then the value of  $\frac{x^{n+1}}{a} + \frac{y^{n+1}}{b}$  is [ ]

A. 1 B. 
$$\left(\frac{1}{a} + \frac{1}{b}\right)^n$$
 C.  $\frac{ab}{a+b}$  D.  $\left(\frac{ab}{a+b}\right)^n$ 

#### **SECTION - II**

### PHYSICS

- 31. When a current of  $(2.5 \pm 0.5)A$  flows through a wire, it develops a potential difference of  $(20 \pm 1)V$ . The resistance of the wire is []
  - A.  $(8 \pm 1.5)\Omega$  B.  $(8 \pm 2)\Omega$  C.  $(8 \pm 3)\Omega$  D.  $(8 \pm 1.6)\Omega$
- 32. A particle is projected with velocity *u* along the *x*-axis. The deceleration on the particle is proportional to the square of the distance from the origin as  $a = \alpha x^2$ , the distance at which the particle stop is

A. 
$$\sqrt{\frac{3u}{2\alpha}}$$
 B.  $\left(\frac{3u^2}{2\alpha}\right)^{1/3}$  C.  $\left(\frac{3u}{2\alpha}\right)^{1/3}$  D.  $\sqrt{\frac{2u^2}{3\alpha}}$  [ ]

33. A stone is projected with a velocity  $10\sqrt{2m/s}$  at an angle of  $45^{\circ}$  to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is  $(g = 10m/s^2)$ 

- A.  $10\sqrt{5}m/s$  B.  $5\sqrt{5}m/s$  C.  $20\sqrt{2}m/s$  D. 20m/s []
- 34. About 0.014kg of nitrogen gas is enclosed in a vessel at a temperature of  $27^{\circ}c$ . The amount of heat to be transferred to the gas to double the r. m. s. speed of its molecules is \_\_\_\_\_ (R=2 cal/mol k)
  - A. 900 cal B. 4500 cal C. 2250 cal D. 450 cal []

35. One mole of an ideal gas has an internal energy given by  $U = U_0 + 2PV$  where *P* is the pressure and

V the volume of the gas.  $U_0$  is a constant . This gas under goes the quasistatic cyclic process ABCDA as shown in U-V diagram

- (a). The molar heat capacity of the gas at constant pressure is 3R.
- (b). The work done by the ideal gas in the process AB is  $\frac{U_1 U_0}{2} \ln 2$

(c). Assuming that the gas consists of a mixture of two gases, the gas is a mixture of di and tri atomic gasesThe correction option is

- A. Only a, b are correct C. Only c is correct
- B. Only b, c are correct D. All are correct





ſ ]

- A
- 36. In the arrangement shown,  $m_{\rm B} = 3m$ , density of liquid is  $\rho$  and density of block B

is  $2\rho$ . The system is released from rest so that block B moves up when in liquid and moves down when completely out of liquid with the same acceleration. The mass of block A is ſ 1

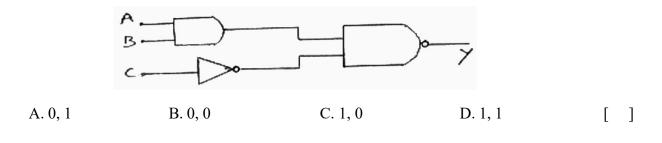
A.  $\frac{9m}{2}$ B.  $\frac{9m}{4}$ С. 2т

37. A refrigerator placed in a room at 300 k has inside temperature 200 k. How many calories of heat shall be delivered to the room for each 2 kcal of energy consumed by the refrigerator ideally?

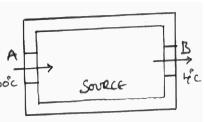
38. A closed cubical box made of perfectly insulating material has walls of thicken 8cm and the only way for the heat to enter or leave the box is through the solid, cylindrical, metal plugs each of cross sectional area  $12 cm^2$  and length 8 cmfixed in the opposite walls of the box as shown in fig. The outer surface A is kept at  $100^{\circ}c$  while the outer surface B of other plug is kept at  $4^{\circ}c$ . The coefficient of thermal conductivity of material 10°c Source

of the plugs is  $0.5cal/cm - \sec^0 c$ . A source of energy generating

36 cal/sec is enclosed inside the box. The equilibrium temperature


of the inner surface of the box assuming that it is same at all points on the inner surface is

A. 
$$52^{\circ}c$$
 B.  $76^{\circ}c$  C.  $48^{\circ}c$  D.  $62^{\circ}c$  [ ]


39. Suppose potential energy between electron and proton at separation r is given by  $U = K \log r$ , where K is a constant. For such a hypothetical hydrogen atom, the radius of  $n^{th}$  Bohr's orbit is

A. 
$$\frac{nh}{2\pi\sqrt{mk}}$$
 B.  $\frac{2\pi h}{n\sqrt{mk}}$  C.  $\frac{nh}{2\pi mk}$  D.  $\frac{n^2h^2}{2\pi mk}$  []

40. What is the output Y in the following circuit, when all the three inputs A, B, C are first 1 and then 0?



#### **Rough Work**



D.  $\frac{7m}{4}$ 

[ ]

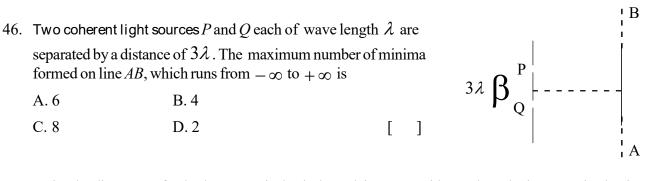
- 41. A sample of radioactive material decays simultaneously by two processes A and B with half-lives  $\frac{1}{2}$  hr and  $\frac{1}{4}$  hr respectively. For first half hour it decay with the process A, next one hour with the process B and for further half an hour with both A and B. If originally there were  $N_0$  nuclei, the number of nuclei after 2 hours of such decay is
  - A.  $\frac{N_0}{2^4}$  B.  $\frac{N_0}{2^2}$  C.  $\frac{N_0}{2^6}$  D.  $\frac{N_0}{2^8}$
- 42. A source of light is placed above a sphere of radius 10*cm*. Find the maximum number of electrons emitted by the sphere before emission of photo electrons stop. The energy of incident photon is 4.2*ev* and the work function of metal is 1.5*ev*

A.  $2.08 \times 10^{18}$  B.  $4 \times 10^{19}$  C.  $1.875 \times 10^{8}$  D.  $2.88 \times 10^{8}$ 

43. A sinusoidal voltage V(t) = 100sin500t is applied across a pure inductance of L = 0.02H. The current through the coil is []

| A10cos500t   | B10sin500t   |
|--------------|--------------|
| C. 10sin500t | D. 10cos500t |

44. The torque required to hold a small circular coil of 10 *turns*, area  $1mm^2$  and carrying a current of


 $\left(\frac{21}{44}\right)A$  in the middle of a long solenoid of  $10^3$  *turns/m* carrying a current of 2.5 A, with its axis

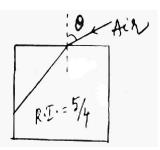
perpendicular to the axis of solenoid is

- A. Zero B.  $1.5 \times 10^{-8} N m$
- C.  $1.5 \times 10^{-3} N m$  D.  $1.5 \times 10^{-6} Nm$
- 45. Two identical drops of water are falling through air with a steady speed of *V* each. If the drops coalese to from a single drop, the new terminal velocity is []

A.  $V^1 = 2^{3/2}V$  B.  $V^1 = 2V$  C.  $V^1 = 2^{2/3}V$  D.  $V^1 = 2^2V$ 



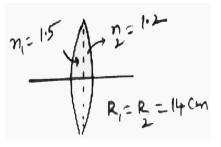


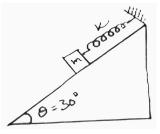

- 47. A circular disc rotates freely about a vertical axis through its centre with angular velocity  $\omega_1$ . A ring having the same mass and radius as the disc is placed on the disc and the system now rotates with an angular velocity  $\omega_2$  about the same vertical axis. Then  $\omega_2/\omega_1$  is []
- A. <sup>1</sup>/<sub>2</sub>
  B. <sup>3</sup>/<sub>2</sub>
  C. 2/3
  D. 1/3
  48. For a certain organ pipe 3 successive resonant frequencies are observed at 425 *Hz*, 595 *Hz* and 765 *Hz*. If the speed of sound in air is 340 *m/s*, then length of pipe is

A. 2 m B. 1 m C. 0.4 m D. 0.5 m []

- 49. The work done in slowly lifting a body from earth's surface to a height *R* (radius of earth) is equal to two times the work done in lifting the body from earth's surface to a height *h*. Here h is equal to [ ]
  - A.  $\frac{R}{4}$  B.  $\frac{R}{6}$  C.  $\frac{R}{3}$  D.  $\frac{R}{2}$

50. The maximum angle  $\theta$  for which the light suffers total internal reflection at the vertical surface is []


- A.  $\sin^{-1}(1/3)$  B.  $\sin^{-1}(3/4)$
- $C.\sin^{-1}(2/3)$  D.  $\sin^{-1}(4/5)$




#### SET-II

- 51. A biconvex lens is formed with two Plano convex lenses as shown in fig. Refractive index of the lens is 1.5 and that of the second lens 1.2. Both the curved surfaces are of the same radius of curvature  $R=14 \ cm$ . For this biconvex lens, for an object distance of
  - 40 cm, the image distance will be [] A. -280 cm B. 40 cm
  - C. 13.3 cm D. 21.5 cm
- 52. One end of a mass less spring of relaxed length 50 cm and spring constant

*k* is fixed on top of a frictionless inclined plane of inclination  $\theta = 30^{\circ}$  as shown in fig. When a mass m=1.5 kg is attached at the other end, the spring extends by 2.5 cm. The mass is displaced slightly and released. The time period (in seconds) of the resulting oscillation will be





A. 
$$\frac{2\pi}{5}$$
 B.  $\frac{\pi}{5}$  C.  $\frac{2\pi}{7}$  D.  $\frac{\pi}{7}$  [ ]

A

53. A bullet of mass 10 gm moving horizontally with a velocity of 400 m/s strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5m. As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm. The speed of the bullet after it emerges out horizontally from the block will be

54. A particle moves on a rough horizontal ground with some initial velocity  $v_0$ . If  $\frac{3}{4}th$  of its kinetic energy is lost due to friction in time  $t_0$ , the coefficient of friction between the particle and the ground is

A. 
$$\frac{v_0}{2gt_0}$$
 B.  $\frac{v_0}{4gt_0}$  C.  $\frac{3v_0}{4gt_0}$  D.  $\frac{v_0}{gt_0}$  [ ]

55. Three identical dipoles are arranged as shown in fig. The net

B.  $\frac{2KP}{r^3}$ 

electric field at 'o' is 
$$\left(K = \frac{1}{4\pi \epsilon_0}\right)$$

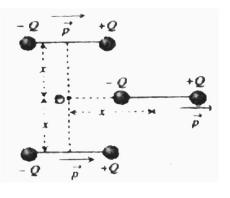
A. 
$$\frac{KP}{x^3}$$

- D.  $\frac{\sqrt{2}KP}{r^3}$ [ ] C. Zero
- 56. Calculate the stress in a tight wire of a material whose youngs modulus is  $19.6 \times 10^{11} dyne/cm^2$  so that speed of the longitudinal wave is 10 times the speed of transverse wave. ſ ]
  - B.  $19.6 \times 10^9 N/m^2$ A.  $19.6 \times 10^8 N/m^2$ C.  $19.6 \times 10^{12} N/m^2$ D.  $19.6 \times 10^{10} N/m^2$
- 57. The driver of a car approaching a vertical wall notices that the frequency of the horn of his car changes from 400 Hz to 450 Hz after being reflected from the wall. Assuming speed of sound to be 340m/s, the speed of approach of car towards the wall is 1 Γ

A. 10 m/s B. 20 m/s C. 30 m/s D. 40 m/s  
The value of resistance 
$$R$$
 in the circuit shown is  
A. 100 $\Omega$  B. 50 $\Omega$   
C. 150 $\Omega$  D. 25 $\Omega$  []  
When a known resistance 10 $\Omega$  and a conductor are connected

59. When a known resistance  $10\Omega$  and a conductor are connected

in the right and left gaps respectively and the conductor is kept at  $0^{\circ}c$ , the balancing length is 50cm. If the temperature of the conductor in left gap is increased to  $100^{\circ}c$ , the balancing length shifts by 10cm. The temperature coefficient of resistance of the material of the conductor is ſ 1


B.  $0.05/^{\circ}c$ A.  $0.005/^{\circ}c$ C.  $0.025/^{\circ}c$ D.  $0.0025/^{\circ}c$ 

60. The electric field in a region of space is given by  $\vec{E} = E_0 \hat{i} + 2E_0 \hat{j}$  where  $E_0 = 70N/C$ . The flux of this field through a circular surface of radius 2cm parallel to X-Z plane is

A.  $0.125 Nm^2/c$ B.  $0.176 Nm^2/c$ D.  $0.70 Nm^2/c$ C. Zero [ ]

#### **Rough Work**

58.



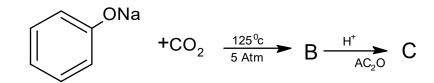
### SECTION - III CHEMISTRY

61. In  $SN^2$  reactions the correct order of reactivity for the following compounds

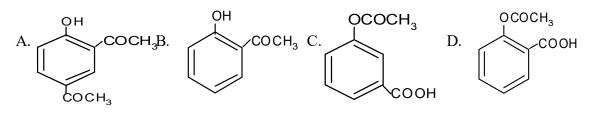
$$CH_3Cl, CH_3CH_2Cl, (CH_3)_2CHCl \text{ and } (CH_3)_3Ccl \text{ is } []$$

$$\begin{split} \text{A.} & CH_{3}Cl > CH_{3}CH_{2}Cl > (CH_{3})_{2}CHcl > (CH_{3})_{3}Ccl \\ \text{B.} & CH_{3}CH_{2}Cl > CH_{3}Cl > (CH_{3})_{2}CHcl > (CH_{3})_{3}Ccl \\ \text{C.} & (CH_{3})_{2}CHcl > CH_{3}CH_{2}Cl > CH_{3}Cl > (CH_{3})_{3}Ccl \\ \text{D.} & CH_{3}Cl > (CH_{3})_{2}CHcl > CH_{3}CH_{2}Cl > (CH_{3})_{3}Ccl \end{split}$$

62. For the non Stoichiometric reaction  $2A + B \rightarrow C + D$  the following kinetic data were obtained in the separate experiments all at 298*K* []


| Initial Concentration | Initial Concentration | <u>n Initial rate of formation of C</u> |
|-----------------------|-----------------------|-----------------------------------------|
| [A]                   | [B]                   | $mol.lit^{-1} \sec^{-1}$                |
| 0.1                   | 0.1                   | $1.2 \times 10^{-3}$                    |
| 0.1                   | 0.2                   | $1.2 \times 10^{-3}$                    |
| 0.2                   | 0.1                   | $2.4 \times 10^{-3}$                    |

The rate law for formation of C is


A. 
$$\frac{dc}{dt} = K[A]^2[B]$$
  
B.  $\frac{dc}{dt} = K[A][B]^2$   
C.  $\frac{dc}{dt} = K[A]$   
D.  $\frac{dc}{dt} = K[A][B]$ 

63. Sodium Phenoxide when heated with  $Co_2$  under pressure  $125^{\circ}c$  yields a product, which on acetylation produces C.?

A



The major product C would be:



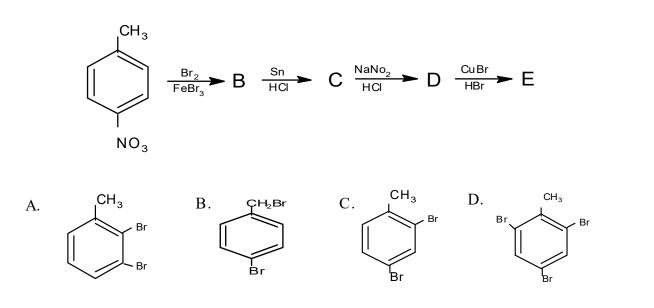
64. The correct set of four quantum numbers for the valency electrons of Rubidium atom (Z=37) is

A. 5,1,0,+1/2 B. 5,1,1,+1/2 [ ] C. 5,0,1,+1/2 D. 5,0,0,+1/2

65. Resistance of 0.2M solution of an electrolyte is 50 ohms. The specific conductance of the solution is  $1.4sm^{-1}$ . The resistance of 0.5M solution of the same electrolyte is 280 ohm. The molar conductivity of 0.5M solution of the electrolyte in  $sm^2mol^{-1}$  is []

A.  $5 \times 10^{-3}$  B.  $5 \times 10^{3}$  C.  $5 \times 10^{2}$  D.  $5 \times 10^{-4}$ 

66. The major organic compound formed by the reaction of 1, 1, 1-trichloro ethane with silver powder is


- A. EtheneB. 2- ButyneC. 2 ButeneD. Acetylene
- 67. The most suitable reagent for the conversion of  $RCH_2OH \rightarrow RCHO$  is
  - A.  $K_2 Cr_2 O_7$  B.  $Cr O_3$  C. PCC D.  $KMnO_4$  []

- 68. Allyl phenyl ether can be prepared by heating
  - A.  $C_6H_5CH = CH Br + CH_3ONa$ B.  $CH_2 = CHBr + C_6H_5CH_2ONa$ C.  $C_6H_5Br + CH_2 = CH - CH_2ONa$
  - D.  $CH_2 = CH CH_2Br + C_6H_5ONa$

69. Vander Waals equation for a gas is stated as  $P = \frac{nRT}{V - nb} - \left(\frac{an^2}{V^2}\right)$ . This equation reduces to perfect gas

equation 
$$P = \frac{nRT}{V}$$
 when [ ]

- A. Both temperature and pressure are very low
- B. Both temperature and pressure are very high
- C. Temperature is sufficiently high and pressure is low
- D. Temperature is sufficiently low and pressure is high
- 70. In a set of reactions P-nitro toluene yielded a product 'E'



#### **Rough Work**

[ ]

[ ]

71. For the estimation of nitrogen 1.4g of an organic compound was digested by Kjeldahl Method and evolved ammonia was absorbed in 60ml of  $\frac{M}{10}H_2SO_4$ . The unreacted acid requires 20ml of

 $\frac{M}{10}$  NaOH for complete neutralization. The percentage of nitrogen in the compound is []

- A. 10% B. 3% C. 5% D. 6%
- 72. *CsCl* crystallizes in body centered cubic lattice. If '*a*' is its edge length then which of the following expression is correct []

A. 
$$rcs^{+} + rcl^{-} = \frac{3a}{2}$$
  
B.  $rcs^{+} + rcl^{-} = \frac{\sqrt{3}a}{2}$   
C.  $rcs^{+} + rcl^{-} = \sqrt{3}a$   
D.  $rcs^{+} + rcl^{-} = 3a$ 

73. For complete combustion of ethane  $C_2H_5OH_{(l)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)}$  the amount of heat produced as measured in bomb calorimeter is 1364.47*kj/mol* at 25° c. Assuming the ideality the Enthalpy of combustion  $\Delta_c H$  for the reaction will be

A. -1361.95 kJ /mol B. -1460.50 kJ/mol C. -1350.50 kJ/mol D. -1366.95 kJ/mol [] 74. Which one is classified as a Condensation Polymer?

A. Neoprene B. Teflon C. Acrylonitrile D. Dacron []

75. The Octahedral complex of a metal ion  $M^{+3}$  with four monodentate ligands  $L_1, L_2, L_3$  and  $L_4$  absorbs wave lengths in the region of red, green, yellow and blue respectively. The increasing order of ligand strengths of four ligands is []

- $\begin{array}{ll} \text{A. } L_{_1} < L_{_3} < L_{_2} < L_{_4} & \\ \text{B. } L_{_3} < L_{_2} < L_{_4} < L_{_1} \\ \\ \text{C. } L_{_1} < L_{_2} < L_{_4} < L_{_3} & \\ \end{array} \\ \begin{array}{ll} \text{D. } L_{_4} < L_{_3} < L_{_2} < L_{_1} \\ \\ \text{D. } L_{_4} < L_{_3} < L_{_2} < L_{_1} \end{array}$
- 76. The cell  $Zn/Zn^{+2}(1M)//Cu^{+2}(1M)/Cu$   $(E^{\circ}cell = 1.10V)$  was allowed to be completely

discharged at 298K. The relative concentration of 
$$Zn^{2+}$$
 to  $Cu^{2+}\left(\frac{Zn^{+2}}{Cu^{+2}}\right)$  is [ ]

A. Antilog 24.08 B. 37.3 C.  $10^{37.3}$  D.  $9.65 \times 10^{4}$ 

#### SET-II

# A

| 77. | Silver Mirror test is given by which one of the following compounds.                                                                                                                                               |                                                                                                                                           |                                                                                      |                                                                                               |                 |              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|--------------|
|     | A. Formaldehyde                                                                                                                                                                                                    | B. Benzophenone                                                                                                                           | C. Acetaldehyde                                                                      | D. Acetone                                                                                    | [               | ]            |
| 78. | a and b are Vander Waals constants for gases chlorine is more easily liquefied than ethane because                                                                                                                 |                                                                                                                                           |                                                                                      |                                                                                               |                 |              |
|     | A. $a$ for $Cl_2 < a$ for                                                                                                                                                                                          | r ethane but b for $Cl_2$                                                                                                                 | > b for ethane                                                                       |                                                                                               | [               | ]            |
|     | B. $a$ for $Cl_2 > a$ for                                                                                                                                                                                          | r ethane but b for $Cl_2$                                                                                                                 | < b for ethane                                                                       |                                                                                               |                 |              |
|     | C. <i>a</i> and b for $Cl_2$                                                                                                                                                                                       | < <i>a</i> and <i>b</i> for ethane                                                                                                        |                                                                                      |                                                                                               |                 |              |
| 79. | _                                                                                                                                                                                                                  | > a and b for ethane<br>ong the following compo                                                                                           |                                                                                      |                                                                                               | [               | ]            |
|     | A. $CH_{3}CH_{2}CH(C$                                                                                                                                                                                              | l)CooH                                                                                                                                    | B. $ClCH_2CH_2CH$                                                                    | CooH                                                                                          |                 |              |
|     | С. <i>СН</i> <sub>3</sub> <i>СооН</i>                                                                                                                                                                              |                                                                                                                                           | D. HCooH                                                                             |                                                                                               |                 |              |
| 80. | The correct order of a                                                                                                                                                                                             | cid strength of the follow                                                                                                                | ing compounds is                                                                     |                                                                                               | [               | ]            |
|     | a. Phenol                                                                                                                                                                                                          | b. P-Cresol                                                                                                                               | c. m-Nitrophenol                                                                     | d. P- Nitrophenol                                                                             |                 |              |
|     |                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                      |                                                                                               |                 |              |
|     | A. $d > c > a > b$                                                                                                                                                                                                 | B. $b > d > a > c$                                                                                                                        | C. $a > b > d > c$                                                                   | D. $c > b > a > d$                                                                            |                 |              |
| 81. |                                                                                                                                                                                                                    | nic compound 'A' produc                                                                                                                   |                                                                                      |                                                                                               | nixtu<br>[      | re<br>]      |
| 81. | Ozonolysis of an orga                                                                                                                                                                                              | nic compound 'A' produc                                                                                                                   |                                                                                      |                                                                                               | nixtu<br>[      | re<br>]      |
| 81. | Ozonolysis of an orga<br>. Identify 'A' from the                                                                                                                                                                   | nic compound 'A' produc<br>following compounds                                                                                            | ces acetone and propior                                                              | naldehyde in equimolar r                                                                      | nixtu<br>[      | re<br>]      |
|     | Ozonolysis of an orga<br>. Identify 'A' from the :<br>A. 1-Pentene<br>C. 2-Methyl-2-Penter                                                                                                                         | nic compound 'A' produc<br>following compounds                                                                                            | ces acetone and propior<br>B. 2-Pentene<br>D. 2-Methyl-1-Pente                       | naldehyde in equimolar r                                                                      | nixtu<br>[      | re<br>]      |
|     | Ozonolysis of an orga<br>. Identify 'A' from the :<br>A. 1-Pentene<br>C. 2-Methyl-2-Penter<br>In the Chemical react                                                                                                | nic compound 'A' produc<br>following compounds<br>ne                                                                                      | ees acetone and propior<br>B. 2-Pentene<br>D. 2-Methyl-1-Pente<br>B respectively are | naldehyde in equimolar r                                                                      | nixtu<br>[      | re<br>]<br>] |
|     | Ozonolysis of an orga<br>. Identify 'A' from the :<br>A. 1-Pentene<br>C. 2-Methyl-2-Penter<br>In the Chemical react                                                                                                | nic compound 'A' produc<br>following compounds<br>ne<br>ion the compounds A and<br>n Chloride and Benzonitri                              | ees acetone and propior<br>B. 2-Pentene<br>D. 2-Methyl-1-Pente<br>B respectively are | haldehyde in equimolar r                                                                      | nixtu<br>[<br>[ | re<br>]<br>] |
|     | Ozonolysis of an orga<br>. Identify 'A' from the :<br>A. 1-Pentene<br>C. 2-Methyl-2-Penter<br>In the Chemical react<br>A. Benzene Diazoniur                                                                        | nic compound 'A' produc<br>following compounds<br>ne<br>ion the compounds A and<br>n Chloride and Benzonitri<br>Bromo Benzene             | ees acetone and propior<br>B. 2-Pentene<br>D. 2-Methyl-1-Pente<br>B respectively are | naldehyde in equimolar r                                                                      | nixtu<br>[<br>B | re<br>]<br>] |
|     | Ozonolysis of an orga<br>. Identify 'A' from the :<br>A. 1-Pentene<br>C. 2-Methyl-2-Penter<br>In the Chemical react<br>A. Benzene Diazoniur<br>B. Nitro Benzene and                                                | nic compound 'A' produc<br>following compounds<br>ne<br>ion the compounds A and<br>n Chloride and Benzonitri<br>Bromo Benzene<br>l phenol | ees acetone and propior<br>B. 2-Pentene<br>D. 2-Methyl-1-Pente<br>B respectively are | haldehyde in equimolar r                                                                      | nixtu<br>[<br>B | re<br>]      |
|     | Ozonolysis of an orga<br>. Identify 'A' from the s<br>A. 1-Pentene<br>C. 2-Methyl-2-Penter<br>In the Chemical react<br>A. Benzene Diazoniur<br>B. Nitro Benzene and<br>C. Fluorobenzene and<br>D. Phenol and Bromo | nic compound 'A' produc<br>following compounds<br>ne<br>ion the compounds A and<br>n Chloride and Benzonitri<br>Bromo Benzene<br>l phenol | B. 2-Pentene<br>D. 2-Methyl-1-Pente<br>B respectively are                            | haldehyde in equimolar r<br>ene<br>$\frac{IaNo_2}{DI,278K} \rightarrow A \frac{CuCN}{\Delta}$ | [<br>[<br>В     | ]            |

| 84. | Consider separate so                                                                                                         | lutions of 0.500M $C_2 H$         | $G_5OH$ , 0.100M $Mg_3(H)$              | $Po_4_{2}(aq), 0.25M K_{4}$ | Br          | and     |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------|-------------|---------|
|     | 0.125M $Na_3Po_4(aq)$ at $25^{\circ}c$ . Which statement is true about these solutions assuming all sal strong electrolytes? |                                   |                                         |                             |             | be<br>] |
|     | A. 0.100M <i>Mg</i> <sub>3</sub> ( <i>Po</i>                                                                                 | $(a_4)_2 aq$ has the highest Os   | motic pressure                          |                             |             |         |
|     | В. 0.125М <i>Na</i> <sub>3</sub> <i>Po</i> <sub>4</sub> <i>a</i>                                                             | q has the highest Osmot           | ic pressure                             |                             |             |         |
|     | C. 0.500M $C_2 H_5 OH$                                                                                                       | I(aq) has the highest Os          | motic pressure                          |                             |             |         |
|     | D. They all have the sa                                                                                                      | ame Osmotic pressure              |                                         |                             |             |         |
| 85. | The IUPAC name of t                                                                                                          | he complex $[Co(No_2)($           | $NH_3)_5$ ] $Cl_2$                      |                             | [           | ]       |
|     | A. Nitrito – N – Penta                                                                                                       | mine Cobalt (III) Chlorid         | le                                      |                             |             |         |
|     |                                                                                                                              | mine Cobalt (II) Chlorid          |                                         |                             |             |         |
|     |                                                                                                                              | -N-Cobalt (II) Chlorid            |                                         |                             |             |         |
| 07  |                                                                                                                              | -N – Cobalt (III) Chlorid         |                                         |                             |             | 1:.     |
| 86. | ionized is                                                                                                                   | $d(HA)$ is 4.5. The $P^{OH}$ of   | r an aqueous solution of                | HA in which $50%$ of the    | e aci       | a 1s    |
|     | A. 4.5                                                                                                                       | B. 2.5                            | C. 9.5                                  | D. 7.0                      | L           | J       |
| 87. | The ionic radii (in $A^0$ )                                                                                                  | ) of $N^{3-}, O^{2-}$ and $F^-$ a | re respectively are                     |                             | [           | ]       |
|     | A. 1.71, 1.40 and 1.3                                                                                                        | 6                                 | B. 1.71, 1.36 and 1.4                   | 0                           |             |         |
|     | C. 1.36, 1.40 and 1.7                                                                                                        | 1                                 | D. 1.36, 1.71 and 1.4                   | 0                           |             |         |
| 88. | Gold numbers of pro<br>correct order of their p                                                                              | tective colloids A, B, C          | and D are 0.5, 0.01, 0                  | .1 and 0.005 respective     | ely. [<br>r | The     |
|     | A. $D < A < C < B$                                                                                                           | forcerive powers is               | B. $C < B < D < A$                      |                             | L           | 1       |
|     | A. $D < A < C < B$<br>C. $A < C < B < D$                                                                                     |                                   | B. $C < B < D < A$<br>D $B < D < A < C$ |                             |             |         |
| 80  | 0.                                                                                                                           | list which of the followin        | D · · · · · · · ·                       | and longth                  |             |         |
| 89. |                                                                                                                              | lict which of the followin        |                                         |                             | _           | _       |
|     | A. $O_2^{2+}$                                                                                                                | B. $O_2^{\oplus}$                 | C. $O_2^-$                              | D. $O_2^{2-}$               |             | ]       |
| 90. | The structure of $IF_7$ is                                                                                                   | 3                                 |                                         |                             |             |         |
|     | A. Octahedral                                                                                                                |                                   | B. Pentagonal bipyran                   | nidal                       |             |         |
|     | C. Square pyramidal                                                                                                          |                                   | D. Trigonal bipyramida                  | al                          | [           | ]       |
|     |                                                                                                                              |                                   |                                         |                             |             |         |

### SECTION - IV ENGLISH/APTITUDE

| 91. | A boatman goes 2 km                                               | m against the current of t                                    | he stream in 1 hour and     | goes 1 km along the cu           | rrent in      |
|-----|-------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|----------------------------------|---------------|
|     | 10 minutes. How long will it take to go 5 km in stationary water? |                                                               |                             |                                  |               |
|     | A. 40 minutes                                                     | B. 1 hour                                                     | C. 1 hr 15 min              | D. 1 hr 30 min                   |               |
| 92. |                                                                   | ogether can fill a cistern ir<br>nore than A to fill the cist | •                           |                                  |               |
|     | A. 1 hour                                                         | B. 2 hours                                                    | C. 6 hours                  | D. 8 hours                       |               |
| 93. | The sum of three nur is 5 : 8, then the seco                      | nbers is 98. If the ratio of and number is                    | the first to second is 2 :3 | and that of the second t         | o the third   |
|     | A. 20                                                             | B. 30                                                         | C. 48                       | D. 58                            |               |
| 94. |                                                                   | cs, Physics and Biology<br>by 40%, 50% and 75% re             |                             |                                  |               |
|     | A. 2 : 3 : 4                                                      | B. 6 : 7 : 8                                                  | C. 6 : 8 : 9                | D. None of these                 | [ ]           |
| 95. | If $log 27 = 1.431$ , th                                          | en the value of log 9 is                                      |                             |                                  | [ ]           |
|     | A. 0.934                                                          | B. 0.945                                                      | C. 0.954                    | D. 0.958                         |               |
| 96. | If $A = x\%$ of y and $A$                                         | B = y% of x, then which                                       | of the following is tru     | e?                               | [ ]           |
|     | A. A is smaller than A                                            | 3.                                                            | B. A is greater than h      | 3                                |               |
|     | C. $A$ is equal to $B$ .                                          |                                                               | D. If $x$ is smaller that   | n $y$ , then $A$ is greater that | ın <i>B</i> . |
|     | In a 300 <i>m</i> race <i>A</i> be                                | eats <i>B</i> by 22.5 <i>m</i> or 6 seco                      | onds. B's time over the     | e course is                      | [ ]           |
| 97. |                                                                   |                                                               |                             |                                  |               |
| 97. | A. 86 sec                                                         | B. 80 sec                                                     | C.76 sec                    | D. None of these                 |               |
|     |                                                                   | as B. If A gives B a start o                                  |                             |                                  | at A and B    |

|                                                                                                                                                                                                                                               |                                                                                                                                                              | 1 (01 ( )                                                    | 41                                    |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|----------------------------------|
| 99. In a 100 m race, 2                                                                                                                                                                                                                        | 4 can beat <i>B</i> by 25 <i>m</i> and <i>B</i> of                                                                                                           | can beat $C$ by $4m$ . In                                    | the same race, A can b                | eat C by                         |
| A. 21 <i>m</i>                                                                                                                                                                                                                                | B. 26 <i>m</i>                                                                                                                                               | C. 28 <i>m</i>                                               | D. 29 <i>m</i>                        | [ ]                              |
| -                                                                                                                                                                                                                                             | n standing water is <i>9kmph</i> ar<br>e of <i>105km</i> and comes back t                                                                                    | -                                                            | 1                                     |                                  |
| A. 16 hours                                                                                                                                                                                                                                   | B. 18 hours                                                                                                                                                  | C. 20 hours                                                  | D. 24 hours                           | [ ]                              |
|                                                                                                                                                                                                                                               | e as long to row a distance ag<br>atio of the speed of the boat (i                                                                                           |                                                              |                                       | n favour o<br>[ ]                |
| A. 2 : 1                                                                                                                                                                                                                                      | B. 3 : 1                                                                                                                                                     | C. 3 : 2                                                     | D.4:3                                 |                                  |
| -                                                                                                                                                                                                                                             | blace 48 <i>km</i> distant and come<br>e time as <i>3km</i> against the stre                                                                                 |                                                              |                                       | m with the                       |
| A. 1 km/hr                                                                                                                                                                                                                                    | B. 1.5 km/hr                                                                                                                                                 | C. 2 km/hr                                                   | D. 2.5 km/hr                          |                                  |
|                                                                                                                                                                                                                                               | C, $C$ are in the ratio $2:3:5$ .                                                                                                                            |                                                              | ,                                     | re allowed                       |
|                                                                                                                                                                                                                                               | D 10 11 00                                                                                                                                                   | G 93 93 (0                                                   |                                       | • 1                              |
| A. 3 : 3 : 10                                                                                                                                                                                                                                 | B. 10 : 11 : 20                                                                                                                                              | C. 23 : 33 : 60                                              | D. Cannot be deter                    | mined                            |
|                                                                                                                                                                                                                                               | B. 10 : 11 : 20<br>ber is equal to two-third of a                                                                                                            |                                                              |                                       |                                  |
| 104. If 40% of a numb                                                                                                                                                                                                                         |                                                                                                                                                              |                                                              |                                       | nber to the                      |
| 104. If 40% of a numb<br>second number?<br>A. 2 : 5                                                                                                                                                                                           | per is equal to two-third of a<br>B. 3 : 7                                                                                                                   | nother number, what                                          | is the ratio of first num             | nber to the                      |
| 104. If 40% of a numb<br>second number?<br>A. 2 : 5                                                                                                                                                                                           | per is equal to two-third of a<br>B. 3 : 7                                                                                                                   | nother number, what                                          | is the ratio of first num             | nber to the                      |
| <ul><li>104. If 40% of a number second number?</li><li>A. 2 : 5</li><li>105. The fourth proportion A. 18</li></ul>                                                                                                                            | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24                                                                                | nother number, what<br>C. 5 : 3                              | is the ratio of first num<br>D. 7 : 3 | nber to the                      |
| <ul><li>104. If 40% of a number second number?</li><li>A. 2 : 5</li><li>105. The fourth proportion</li></ul>                                                                                                                                  | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24                                                                                | nother number, what<br>C. 5 : 3                              | is the ratio of first num<br>D. 7 : 3 | nber to the                      |
| <ul> <li>104. If 40% of a number second number?</li> <li>A. 2 : 5</li> <li>105. The fourth proportion</li> <li>A. 18</li> <li>106. He was struck</li> <li>A. with</li> </ul>                                                                  | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24<br>lightning.<br>B. by                                                         | nother number, what<br>C. 5 : 3<br>C. 19                     | D. 7 : 3<br>D. 20                     | nber to the                      |
| <ul> <li>104. If 40% of a number second number?</li> <li>A. 2 : 5</li> <li>105. The fourth proportion</li> <li>A. 18</li> <li>106. He was struck</li> </ul>                                                                                   | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24<br>lightning.<br>B. by                                                         | nother number, what<br>C. 5 : 3<br>C. 19                     | D. 7 : 3<br>D. 20                     | nber to the                      |
| <ul> <li>104. If 40% of a number second number?</li> <li>A. 2 : 5</li> <li>105. The fourth proportion</li> <li>A. 18</li> <li>106. He was struck</li> <li>A. with</li> <li>107. He has been living</li> </ul>                                 | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24<br>lightning.<br>B. by<br>gherea month.<br>B. since                            | nother number, what<br>C. 5 : 3<br>C. 19<br>C. for           | D. 7 : 3<br>D. 20<br>D. at            | nber to the                      |
| <ul> <li>104. If 40% of a number second number?</li> <li>A. 2 : 5</li> <li>105. The fourth proportion A. 18</li> <li>106. He was struck</li> <li>A. with</li> <li>107. He has been living A. from</li> </ul>                                  | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24<br>lightning.<br>B. by<br>gherea month.<br>B. since                            | nother number, what<br>C. 5 : 3<br>C. 19<br>C. for           | D. 7 : 3<br>D. 20<br>D. at            | nber to the                      |
| <ul> <li>104. If 40% of a number second number?</li> <li>A. 2 : 5</li> <li>105. The fourth proportion A. 18</li> <li>106. He was struck</li> <li>A. with</li> <li>107. He has been living A. from</li> <li>108. Bharat goes to the</li> </ul> | ber is equal to two-third of a<br>B. 3 : 7<br>rtional to 5, 8, 15 is<br>B. 24<br>lightning.<br>B. by<br>gherea month.<br>B. since<br>e office foot.<br>B. by | nother number, what<br>C. 5 : 3<br>C. 19<br>C. for<br>C. for | D. 7 : 3<br>D. 20<br>D. at<br>D. of   | nber to the<br>[ ]<br>[ ]<br>[ ] |

| 110. Sunitha said that she on this novel for five years. |                                 |                             |                          |                     |   |   |
|----------------------------------------------------------|---------------------------------|-----------------------------|--------------------------|---------------------|---|---|
|                                                          | A. has been working             |                             | B. had been working      |                     |   |   |
|                                                          | C. have been working            | <b>3</b>                    | D. will work             |                     | [ | ] |
| 111.                                                     | They the old w                  | all when it collapsed.      |                          |                     |   |   |
|                                                          | A. are painting                 | B. was painting             | C. were painting         | D. paint            | [ | ] |
|                                                          | Fill in the blanks wi           | th the suitable collectiv   | e names front he opti    | ons give below      |   |   |
| 112                                                      | . Children were excited         | d to see a of candie        | es.                      |                     | [ | ] |
|                                                          | A. mint                         | B. plague                   | C. wisp                  | D. prattle          |   |   |
|                                                          | Sentence improvem               | ent.                        |                          |                     |   |   |
| 113                                                      | . We spent an hour disc         | cussing about his characte  | r.                       |                     | [ | ] |
|                                                          | A. on his character             | B. of his character         | C. his character         | D. no improvement   |   |   |
|                                                          | Choose the opt one f            | from the following          |                          |                     |   |   |
| 114.                                                     | . Neither the principal r       | nor his colleagues          | given any explanat       | ion for this.       | [ | ] |
|                                                          | A. has                          | B. have                     | C. are                   | D. were             |   |   |
|                                                          | Choose the suitable             | meaning from the optic      | ons for the underlined   | d expression.       |   |   |
| 115.                                                     | . We should give <u>a wid</u>   | le berth to bad characters. |                          |                     | [ | ] |
|                                                          | A. give publicity to            | B. not sympathies           | C. keep away from        | D. publicly condemn |   |   |
|                                                          | Choose the suitable             | meaning from the optic      | ons for the underlined   | d expression.       |   |   |
| 116.                                                     | . He made a plan <u>to mu</u>   | urder in cold blood.        |                          |                     | [ | ] |
|                                                          | A. murder some one i            | n sleep                     | B. to kill a hibernating | animal              |   |   |
|                                                          | C. to commit a prepla           | nned murder                 | D. to kill some one ac   | cidentally          |   |   |
|                                                          | Choose the suitable             | meaning from the optic      | ons for the underlined   | d expression.       |   |   |
| 117.                                                     | . The boy had a <u>hair – l</u> | breadth escape from the s   | treet accident.          |                     | [ | ] |
|                                                          | A. a lucky                      | B. a quick                  | C. an easy               | D. a narrow         |   |   |
|                                                          |                                 |                             |                          |                     |   |   |

#### SET-II

# A

|                               | Choose the correct alternative question tag. |                           |                       |                 |   |   |  |
|-------------------------------|----------------------------------------------|---------------------------|-----------------------|-----------------|---|---|--|
| 118. None of the clerks came? |                                              |                           |                       |                 |   |   |  |
|                               | A. didn't                                    | B. did they               | C. do they            | D. didn't they  | [ | ] |  |
|                               | Fill in the blanks wi                        | th suitable relative prop | nouns.                |                 |   |   |  |
| 119                           | 119. Here is a pen you lost.                 |                           |                       |                 |   |   |  |
|                               | A. where                                     | B. what                   | C. which              | D. when         | [ | ] |  |
|                               | Choose the correct alternative.              |                           |                       |                 |   |   |  |
| 120                           | ). The clown was being                       | laughed at by them.       |                       |                 |   |   |  |
|                               | A. they were laughing                        | g at the clown            | B. they were laughing | g on the clown  |   |   |  |
|                               | C. they laughed at the                       | clown                     | D. the clown was lau  | ghed at by them | [ | ] |  |

# **A** SPACE FOR ROUGH WORK